## 入学試験問題

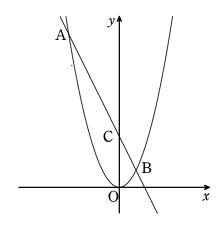
## 数学

100点満点(50分)

## (注意)

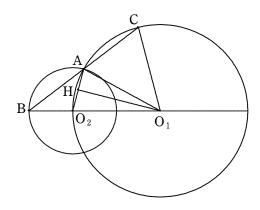
- 1. 問題冊子及び解答用紙は指示があるまで開かないこと
- 2. 問題は 1 ~ 4 、解答用紙は別紙
- 3. 試験開始後、問題冊子表紙・解答用紙に受験番号を記入すること
- 4. 試験終了後、問題冊子・解答用紙ともに回収

受験番号


- 1 次の問いに答えなさい。
  - (1) 次の計算をしなさい。

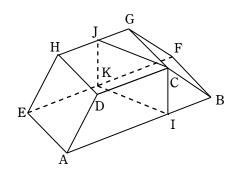
① 
$$(-2)^2 \times 3 - 5^2 + 7 \times (-2) + (-5) \times (-3)$$

$$2 \frac{3}{2} - \frac{7}{2} \times \frac{1}{5} + \frac{9}{20}$$


$$3 \quad -3a^5b^6 \times 6a^2b \div (2a^3b^4)^2$$

- (2) 次の式を因数分解しなさい。
  - ①  $2(x-1)(x-2)-(x-1)^2$
  - ②  $a^2b^2 + 7a^2b + 6a^2$
- (3)  $x=\sqrt{3}+3$  のとき、 $(x-2)(x+2)-\sqrt{3}(x-1)(x-3)$  の値を求めなさい。
- (4) 5 円の硬貨が 3 枚, 10 円の硬貨が 1 枚ある。これら 4 枚の硬貨を同時に投げ、表が出た硬貨の合計が 10 円以下となる確率を求めなさい。
- (5) 連続する5つの自然数があり、その最大の数と最小の数の積が32になるとき、最大の数と最小の数の和を求めなさい。
- ② 図のように、関数  $y = \frac{1}{2}x^2$  のグラフ上に x 座標がそれ ぞれ -8, 2 となる 2 点 A, B があり、直線 AB と y 軸と の交点を C とします。点 P が関数  $y = \frac{1}{2}x^2$  のグラフ上に あるとき、次の問いに答えなさい。
  - (1) 直線 AB の式を求めなさい。
  - (2) △OABの面積を求めなさい。
  - (3)  $\triangle$ OCP の面積が  $\triangle$ OAB の面積の  $\frac{1}{4}$  になるときの点 P の座標をすべて求めなさい。




(図は正確とは限りません)

- ③ 図のように、半径 4 の円  $O_1$  の円周上に点  $O_2$  があり、点  $O_2$  を中心とする半径 2 の円  $O_2$  と円  $O_1$  の交点の 1 つを A とします。直線  $O_1O_2$  と円  $O_2$  との交点のうち円  $O_1$  の外側にある交点を B とします。また、直線 AB と円  $O_1$  との交点のうち A とは異なるものを C とします。以下の問いに答えなさい。
  - (1) 中心  $O_1$  から線分  $O_2A$  に下ろした垂線  $O_1H$  の長さを求めなさい。
  - (2) △O<sub>2</sub>ABの面積を求めなさい
  - (3)  $\triangle O_1 AC$  の面積を求めなさい。



(図は正確とは限りません)

- 4 図のように、四角柱 ABCD-EFGH を横にした立体があります。底面の四角形 ABCD は台形であり、 AB/DC、AB>DC、 $\angle DAB=\angle CBA$ 、  $AD=BC=\sqrt{13}$  、 CD=4 となっています。また、 $CI\bot AB$  となるように辺 AB 上に点 I をとります。BI=2 のとき、次の問いに答えなさい。
  - (1) 線分 CI の長さを求めなさい。
  - (2) 四角柱 ABCD-EFGH の体積が 54 であるとき, 辺 CG の長さを求めなさい。
  - (3) 辺 GH 上に線分の長さの和 EJ+JC の値が最も小さくなるように点 Jをとります。また、JK⊥EF となるように辺 EF 上に点 K をとります。CG の長さが(2)で求めた長さであるとき、2つの三角形 △BCI、△CGJ、および4つの四角形 CJKI、BCGF、BFKI、FGJKで囲まれた立体の体積を求めなさい。



(図は正確とは限りません)

| _ |     |    |  |
|---|-----|----|--|
| 1 | (1) | 1  |  |
|   |     | 2  |  |
|   |     | 3  |  |
|   |     | 4  |  |
|   | (2) | 1) |  |
|   |     | 2  |  |
|   | (3) |    |  |
|   | (4) |    |  |
|   | (5) |    |  |

|   | (1) | y =    |
|---|-----|--------|
| 2 | (2) | △OAB = |
|   | (3) |        |

|   | (1) | $O_1H =$            |
|---|-----|---------------------|
| 3 | (2) | $\triangle O_2AB =$ |
|   | (3) | $\triangle O_1AC =$ |

計算用余白

| 1 | .小計 |
|---|-----|
|   |     |

| 21  | ιν≣∔ |
|-----|------|
| Z./ | I\₽L |

| 2 1 | l√=⊥ |
|-----|------|
| 3 / | 八計十  |

4.小計

得点

受験番号

1.小計

46

2.小計

18

3.小計

18

4.小計

18

| 1 | (1) | 1             | -12                    |
|---|-----|---------------|------------------------|
|   |     | 2             | $\frac{5}{4}$          |
|   |     | 3             | $-\frac{9a}{2b}$       |
|   |     | 4             | $\frac{11x - 19y}{35}$ |
|   | (2) | 1)            | (x-1)(x-3)             |
|   |     | 2             | $a^{2}(b+1)(b+6)$      |
|   | (3) |               | $2 + 3\sqrt{3}$        |
|   | (4) | $\frac{1}{2}$ |                        |
|   | (5) |               | 12                     |

(1) 
$$O_1H = \sqrt{15}$$
  
(2)  $\triangle O_2AB = \frac{\sqrt{15}}{2}$   
(3)  $\triangle O_1AC = \frac{3\sqrt{15}}{2}$ 

計算用余白

受験番号

100